Noise Reduction of Biomedical Signal using Artificial Neural Network Model
نویسنده
چکیده
The Electromyography (EMG) is a very important biomedical signal and can be used for verity of applications in clinical or biomedical field. This signal is used to detect abnormal muscle activities like impaired nourishment of an organ or part of body, inflammation of muscles, pinched nerves and peripheral nerve damages etc. The EMG signal is controlled by nervous system and is dependent on the anatomical and physiological properties of muscles and is affected due to artifacts. Therefore the EMG signal is complicated signal and noise-prone. This noise signal reduces the performance of EMG signal. During signal processing, the system picks up noise signal along with desired signal. In this paper, Artificial Intelligent model using Focused Time Lagged Recurrent Neural Network with a single hidden layer has been developed. From the implication of findings, FTLRNN reduces noise intelligently from the EMG signal. The difference between EMG with noise and desired EMG signal is computed from the performance measures MSE, NMSE and r.
منابع مشابه
The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملSolving the local positioning problem using a four-layer artificial neural network
Today, the global positioning systems (GPS) do not work well in buildings and in dense urban areas when there is no lines of sight between the user and their satellites. Hence, the local positioning system (LPS) has been considerably used in recent years. The main purpose of this research is to provide a four-layer artificial neural network based on nonlinear system solver (NLANN) for local pos...
متن کاملPerformance of the Wavelet Transform-Neural Network Based Receiver for DPIM in Diffuse Indoor Optical Wireless Links in Presence of Artificial Light Interference
Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both doma...
متن کاملDetecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks
Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...
متن کاملPrediction of forging force and barreling behavior in isothermal hot forging of AlCuMgPb aluminum alloy using artificial neural network
In the present investigation, an artificial neural network (ANN) model is developed to predict the isothermal hot forging behavior of AlCuMgPb aluminum alloy. The inputs of the ANN are deformation temperature, frictional factor, ram velocity and displacement whereas the forging force, barreling parameter and final shape are considered as the output variable. The developed feed-forward back-prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012